This study was designed to examine the effects of low-energy laser irradiation on osteocytes and bone resorption at bony implant sites. Five male baboons with a mean age of 6.5 years were used in the study. Four holes for accommodating implants were drilled in each iliac crest. Sites on the left side were irradiated with a 100 mW low-energy laser (690 nm) for 1 min (6 Joule) immediately after drilling and insertion of four sandblasted and etched (Frialit-2 Synchro) implants. Five days later, the bone was removed en bloc and was evaluated histomorphometrically. The mean osteocyte count per unit area was 109.8 cells in the irradiated group vs. 94.8 cells in the control group. As intra-individual cell counts varied substantially, osteocyte viability was used for evaluation. In the irradiated group, viable osteocytes were found in 41.7% of the lacuna vs. 34.4% in the non-irradiated group. This difference was statistically significant at $P < 0.027$. The total resorption area, eroded surface, was found to be 24.9% in the control group vs. 24.6% in the irradiated group. This difference was not statistically significant. This study showed that osteocyte viability was significantly higher in the samples that were subjected to laser irradiation immediately after implant site drilling and implant insertion, in comparison to control sites. This may have positive effects on the integration of implants. The bone resorption rate, in contrast, was not affected by laser irradiation.

Dortbudak O, Haas R, Mailath-Pokorny G.

Department of Oral Surgery, Dental School, University of Vienna, Austria.
orhun.doerbudak@univie.ac.at